




Associative: $L_5MX + Y \rightarrow X[L_5M]Y \rightarrow X + L_5MY$ rate=k·[M-X]·[Y] Dissociative: $L_5MX + Y \rightarrow X + [L_5M] + Y \rightarrow X + L_5MY$ rate=k·[M-X] rate determining step No intermediate (activation energy 2 too small or absent): Interchange associative or interchange dissociative

Square planar substitution $ML_2TX + Y \rightarrow ML_2TY + X$; (X and Y trans to T): Second order rate constant (same X and Y) increase in the order of T: H_2O , OH^- , NH_3 , $py < CI < Br < SCN^- < I^- < NO_2^- < C_6H_5^- < SC(NH_2)_2 < CH_3^- < NO, CN^-$, COTrans-influence: higher ground state energy Trans effect: stabilise transition state/intermediate

26.5	L ¹ L ² Primit X Y Trigonal bipyramidal transition state or intermediate ### Trigonal bipyramidal transition state or intermediate #### ### ### ### ### ### ### #### ##
Fig. 26.5	In the trigonal plane of the 5-coordinate transition state or intermediate, a π -bonding interaction can occur between a metal d orbital (e,g,d_m) and suitable orbitals (e,g,p) atomic orbitals, or molecular orbitals of π -symmetry) of ligand L^2 (the ligand L^2 mus to the leaving group), L^2 (the leaving group) and L^2 (the entring group), L^2 or L^2

End of chapter 26 problem 26.4: $k_{obs}=k_a+k_b\cdot[py]$ $k_a=26.0s^{-1}$; $k_b=3.2\cdot10^2(Ms)^{-1}$ 26.5: $PtCl_4^{2-}\rightarrow cis \& tr-PtCl_2NH_3NO_2^ PtCl_4^{2-}+P(C_2H_5)\rightarrow?$ 26.7: $k_{obs}=k_1+k_2\cdot[tu]$; k_1 very small solvent assisted path negligible